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Abstract

We studied the effect of diurnal rhythm in RR inter-
val (RRI) correlations of long QT syndrome (LQTS) pa-
tients. We focused on discrimination of healthy controls
and LQTS subjects based on the variation of the HRV be-
tween the day and the night. We used 24-hour Holter
recordings from Telemetric and Holter ECG Warehouse
with 149 healthy controls and 88 genetically confirmed
LQTS patients (LQT1 = 70, LQT2 = 18, LQTS without
beta blocker (BB) medication = 54, LQTS with BB medi-
cation = 29). The data was split into daytime (hours 15–
19) and night-time (00–04). We assessed the RRI correla-
tions with detrended fluctuation analysis (DFA) and its dy-
namical extension (DDFA) by considering time- and scale-
dependent scaling exponents α(t, s). We observed reduced
diurnal variability in the RRI correlations of LQTS pa-
tients, resulting in greater divergence from healthy con-
trols during the day for all subsets. The effect was in-
creased in the BB-treated subgroup (ROC-AUC 0.88, p =
3.7×10−5), but the results persisted in the absence of BBs
(ROC-AUC 0.83, p = 3.6 × 10−7) with statistical signif-
icance (p > 0.05). The overall reduction in both the RRI
correlations and their diurnal variability could potentially
be exploited in QT-free risk assessment of LQTS.

1. Introduction

Long QT syndrome (LQTS) is a genetic cardiac con-
dition, where the QT interval and corrected QT interval
(QTc) values of the electrocardiogram (ECG) are pro-
longed due to the delayed repolarization of the myocar-
dia [1]. LQTS is divided in several subtypes based on the
mutations affecting the sodium and potassium channels in
different genes. The three main subtypes (LQT1, LQT2,
LQT3) account for around 75 % of all the LQTS cases [1].
Sudden cardiac death can be the first symptom of the un-
derlying LQTS for up to 10 % of the cases [2]. Therefore,
early detection and prevention of LQTS are vitally impor-
tant. Currently, LQTS is diagnosed with Schwartz crite-
ria [3] and confirmed with genetic testing. Even though

the main implication of LQTS is prolonged QTc, the crite-
ria includes several other factors, such as the clinical his-
tory and family history, which are unrelated to prolonged
QTc. There are certain conditions with resembling symp-
toms [4], which can be misdiagnosed as LQTS due to am-
biguous diagnostic criteria. Additionally, the criteria have
been confirmed to have poor diagnostic specificity [5].

The diurnal variation of QT intervals in LQTS subjects
has been previously studied from 24-hour Holter record-
ings, and it has been shown that the intervals are pro-
longed during night [6]. However, this effect prevails in
the healthy population [7], where the night-time QTc val-
ues are inclined to surpass the healthy limit of 450 ms.
This underlines the importance of the clinical context of
the QTc analysis.

Heart rate variability (HRV) metrics, and in particular
detrended fluctuation analysis [8] (DFA), have potential
for supplementing the diagnostic criteria [9]. The HRV is
also known to exhibit diurnal variation [10]. Here, we uti-
lize DFA and recently introduced dynamical DFA (DDFA)
[11] to examine the diurnal variation in RR interval (RRI)
correlations of healthy controls and LQTS subjects with an
aim to further improve the diagnosability.

2. Data and Preprocessing

We used two large datasets, Healthy (E-HOL-03-0202-
003) and Congenital Long QT Syndrome (E-HOL-03-
0480-013) from Telemetric Holter and ECG Warehouse
[12,13]. The datasets consist of Holter recordings with 2 or
3 leads. The healthy dataset contains 202 recordings from
as many individuals and the LQTS dataset contains 480
recordings from 307 individuals. The LQTS dataset in-
cludes many infants and children, so the age distributions
are significantly imbalanced. Thus, infants and children
were excluded from the LQTS dataset, leading to similar
age distributions for the datasets. Beta blockers (BBs) are
the most common treatment for LQTS, and to control for
their effect we limited ourselves to subjects without any
medication or exclusively on BBs.

We defined the daytime as hours 15–19 and night-time
as hours 00–04. These segments are included in the most
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recordings, and the most subjects could be reasonably as-
sumed to be awake or sleeping/resting during these seg-
ments, respectively. Furthermore, the starting point of
the recording varied between the subjects, so hours 15–19
were chosen to include the majority of the measurement.
The samples that did not contain data for both daytime and
night-time segments were discarded.

The RRIs were extracted from the ECG with an in-house
algorithm (QRS detection specificity 99.5 % and sensitiv-
ity 99.6 % with 30 ms threshold for the MIT-BIH Arrhyth-
mia Database). The following filtering procedure was ap-
plied to the RRIs to assure consistent data for further anal-
ysis: (i) local median in windows of 21 RRIs is computed;
(ii) the RRIs with differences ≥ 500 ms to the preceding
RRI are removed; (iii) RRIs outside of the range 0.75–1.50
times the local median are removed. The samples with a
removal rate larger than 5 % were discarded.

After the data selection and preprocessing, we ended up
with 149 healthy controls and 88 LQTS samples (LQT1:
70, LQT2: 18). Out of the LQTS samples, 54 have no
medication and 29 are on BBs. The remaining 5 subjects
have a medication different from BBs. The basic informa-
tion about the studied subsets is summarized in Table 1.

Table 1. Summary of the analyzed subsets of the data. For
the number of samples N , the number of unique subjects
is shown in parenthesis. The gender is shown as males (m)
/ females (f), and the rest are shown as the mean ± standard
deviation.

Healthy LQT1 LQT2 LQTS LQTS
(no BB) (BB)

N (subjects) 149 (149) 70 (55) 18 (15) 54 (50) 29 (25)
gender (m/f) 68/75 30/40 5/13 25/29 8/21
age (years) 38± 14 37± 16 37± 15 39± 16 31± 11
RR (ms) 774± 177 854± 209 769± 183 843± 208 828± 205

3. Methods

Previously, conventional DFA α1 and its scale-
dependent extension showed enhanced discernibility for
LQTS from other common HRV measures, particularly
at higher DFA orders [9]. We complement the scale-
dependent DFA with dynamical detrended fluctuation
analysis (DDFA) [11]. DDFA extends conventional
DFA [8] to the study of dynamical behavior of RRI cor-
relations with time and scale-dependent scaling exponents
α(t, s) [11]. We investigated the diurnal variation of HRV
with only 2nd order DFA and DDFA.

The statistical significance of the differences in the scal-
ing exponents α in the different groups was assessed by
Welch’s t-test. We evaluated the distinguishability of the
different groups by area under curve (AUC) of receiver op-
erating characteristic (ROC) [14].

4. Results

First, we utilize conventional second-order DFA α1 and
focus on short scales (4–16), which has been shown to
yield a powerful discrimination for LQTS [9]. We analyze
the statistical significance of the discrimination between
healthy and different LQTS subgroups including LQT1
(pday = 2.0× 10−9, pnight = 3.5× 10−5), LQT2 (pday =
8.3×10−3, pnight = 4.1×10−2), LQTS with BB medica-
tion (pday = 3.7× 10−6, pnight = 3.1× 10−4) and LQTS
without BB medication (pday = 3.6 × 10−7, pnight =
1.1× 10−3), where all the differences are statistically sig-
nificant (limit p < 0.05). In Fig. 1 the p-values of Welch’s
t-test are plotted as a function of ROC-AUC scores of
the α1 results between the healthy and LQTS subgroups.
Since the datasets are imbalanced due to smaller sizes of
the LQTS subsets, a corresponding number of healthy sub-
jects is randomly selected to match the size of each LQTS
subset. The procedure is repeated 100 times, and the mean
values of both p-value and ROC-AUC score are taken to
average the randomization of the samples.
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Figure 1. ROC-AUC scores and Welch’s t-test p-values
for the studied subsets and their diurnal separations in day
(d) and night (n) for second-order DFA α1.

Figure 1 shows that the discrimination of LQTS during
the day compared to the night is considerably and system-
atically stronger. The discrimination persists at night, but
with lower performance. The effect of the BBs can be
easily seen, and the ROC-AUC score of the day-segments
reaches a high value of 0.88. Furthermore, during the night
the BB effect is observable with higher discrimination.
There is little difference between LQT1 and LQT2, and the
LQTS subjects without medication have the lowest ROC-
AUC scores. However, the situation without medication is
the most promising for practical diagnostic purposes, since
a previous medication with BBs already implies the exis-
tence of a heart condition.

Next we focus on DDFA to demonstrate the real-time
differences between healthy and LQTS subjects. Figure 2
shows examples of DDFA results for RRIs of a healthy and
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Figure 2. Examples of dynamical detrended fluctuation analysis for RR intervals of healthy and LQTS subjects in day-
and night-time. The black line corresponds to the moving average HR computed in 30-second segments.

LQTS subject (LQT1, no BB) during the daytime (A, B)
and night-time (C, D). It is evident that α(t, s) in short
scales (4–16) during the day is considerably higher for
the healthy subject compared to the LQTS subject, even
though the HR range is similar in both cases. The differ-
ences are diminished during the night, where the α(t, s)
behavior is relatively similar in both cases.
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Figure 3. Aggregate plots of the DDFA results for RR
intervals of healthy and LQTS subjects in day- and night-
time computed for the full datasets.

To study the differences and similarities between
healthy and LQTS subjects for the complete dataset we
construct an aggregate plot of α(t, s) for all the samples
as a function of HR. This is shown in Fig. 3 for healthy
and LQTS groups, and for daytime and night-time, respec-
tively. The figure shows that the phenomenon observed
within Fig. 2 is conserved across the whole dataset. The
most distinguishable difference is once again visible dur-
ing the day, where α(HR, s) is considerably higher for
healthy than for LQTS subjects across a large range of
HR (70–120 BPM), especially for the short scales (4–16),
but also extending to scales up to 30. Moreover, during
the night, the healthy subjects exhibit higher α(HR, s), es-
pecially for higher HR values. However, the short-scale
differences are reduced, potentially leading to reduced dis-

crimination power. It is also noteworthy that the maximal
HRs found at night are considerably lower than during the
day, and thus the different axes between the day- and night-
time are not directly compatible.

In Fig. 4, the density of the DDFA α over the whole
dataset is plotted as a function of the RRI scale. Inspect-
ing the figure, it is evident that the discrimination between
healthy and LQTS is considerably better during the day
than during the night. Furthermore, we find that the most
prominent differences between the healthy and LQTS sub-
jects for both day and night occur in short scales (4–16),
where the differences are highlighted with the different
mode of the distributions. However, detailed analysis us-
ing scale-dependent DFA is required.
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Figure 4. Mean densities of DDFA scaling exponents and
their modes as a function of the scale during the day and
the night for healthy controls and LQTS patients.

Finally, we point our that a healthy heart is known to ex-
hibit fractal properties in the RR fluctuations, correspond-
ing to higher values of scaling exponent α [15]. These
fluctuations reflect the adaptive and flexible nature of the
cardiac regulation system, which can adjust to changing
internal and external conditions. Therefore, reduction of
α implies reduction in the adaptivity, which may cause
arrhythmias or altered heartbeats as known symptoms of
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LQTS [2]. The conducted analysis shows significantly re-
duced scaling exponents for LQTS compared to healthy,
especially during the daytime. During the night the scaling
exponents are reduced in both groups (at the lowest HRs),
and the differences between the groups are less prominent
than during the day.

5. Conclusion

DFA and DDFA provide a promising tool for QT-free
analysis of the LQTS. The discrimination between the
LQTS and healthy subjects is enhanced with the consid-
eration of the diurnal variation. In particular, the distin-
guishability is significant during the day compared to the
night. Further insights could be obtained by considering
scale-dependent DFA as well as rigorous statistical analy-
sis of the DDFA results, which was here limited to a survey
of the aggregate landscapes and densities of the time- and
scale-dependent scaling exponents. Nevertheless, (D)DFA
could already be potentially exploited in the diagnosis of
LQTS along with the prevalent diagnostic criteria, taking
also the diurnal variation into account.
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